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Cluster size distributions in particle systems with asymmetric dynamics
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We present exact and asymptotic results for clusters in the one-dimensional totally asymmetric exclusion
procesg TASEP with two different dynamics. The expected length of the largest cluster is shown to diverge
logarithmically with an increasing system size for ordinary TASEP dynamics and as a logarithm divided by a
double logarithm for generalized dynamics, where the hopping probability of a particle depends on the size of
the cluster it belongs to. The connection with the asymptotic theory of extreme order statistics is discussed in
detail. We also consider a related model of interface growth, where the deposited particles are allowed to relax
to the local gravitational minimum.
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[. INTRODUCTION librium systems, namely interface growth and directed poly-
mers in random medifl]. In particular, the cluster proper-

The totally antisymmetric exclusion proce§GASEP is  ties are translated to the excursion properties of the growing
one of the most studied models of nonequilibrium phenominterface and the largest clusters measure the long excursions
ena and has attracted both physicists and mathematiciarigefore turning back.
Many of its features, including density profiles and currents, This paper is organized as follows. In Sec. Il we present
have been solved with periodic and open boundary condithe basic definitions and the mapping between TASEP and
tions [1-3]. In particular, the so-called matrix formulation the so-called zero-range process. The properties of clusters in
has provided an elegant way of exploring the properties oftationary TASEP are studied using this mapping in Sec. IIl.
the steady state and has been successfully applied to get ndR-particular, we present analytical results for the largest par-
trivial results for the so-called shock solutions and for sysdicle and hole clusters in Secs. IlIB and Il C. In Sec. IV
tems with several species of particles5]. Recently, it has extremal statistics of clusters for TASEP with the modified

been used to solve the exact large deviation functional foflynamics is considered. Finally, in Sec. V we discuss a re-

the density profile in the case of open boundaf&s lated model of interface growth.
TASEP has been used to model free traffic flofy and
traffic jams induced by a crossing]. Traffic interpretation Il. THE MODEL

naturally raises a question of queue lengths in the system. thao model system we analyze in Secs. Ill and IV is the
Although this problem is equivalent to one-dimensional Sitetotally asymmetric exclusion proce¢SASEP with n par-
percolation in the canonical ensemble, if the steady statg.eq hopping to the right in a one-dimensional latticeNof
with usual exclusion dynamics and periodic boundary Condi'sites, whereN is an even number, with periodic boundary

tions is considered, being exactly solvable, it may still give.qngitions. For conveniendsee below; we first restrict
some insight to problems, which are too complicated to solve

in more complex situations. The statistics of the longest p=n/N=1-1/k where k=273, .... (2.9
gueue, or particle cluster as we shall call them, is interestin ) , i
because it measures the size of the large deviations in thE€ dynamics, however, differs from that of the ordinary
system. Largest clusters in percolation in general dimensionASEP. We introduce another paramet+0,1,...n,
were recently studied by Baza]. An exact solution, with ~ Which forz=1 makes the hopping probability depend on the
limiting behaviors, is presented in this paper for the oneleéngth of the queue behind the particle in question as fol-
dimensional exclusion process. In exclusion processes, orf@ws: After randomly picking an occupied site, check how
has also the possibility of changing the microscopic dynammany occupied sites the_re are in be_tween the chosen site and
ics, which leads to percolation problems with different typesth® next empty site. If this number is less than or equai to

of cluster statistics. For example, a model for “reckless driv-the rightmost particle in the cluster makes a move to the right
ers,” who are trying to escape from their chasers, is consid=— Otherwise nothing happens.

ered in the present paper. We show that this dynamics results NOW the casez=0 is clearly the usual TASEP. In the

in Poisson statistics for the cluster sizes, which in turn makeBreésent paper, we concentrate mainly on the cluster length
the properties of the largest cluster very different from thosé’roperties of the two cases=0 andz=n. We shall also

in the case of the usual TASEP dynamics. comment briefly on a model of interface growth, where the

is equivalent to a certain symmetrization of the n case.

*Corresponding author. Email address: A. TASEP and the zero-range process

otto.pulkkinen@phys.jyu.fi Many properties of the exclusion process can be accessed
"Email address: juha.merikoski@phys.jyu.fi by using the mappin§10,11 to the zero-range process in-
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troduced in Ref. [12]. The mass variableM;, i whereM;’s are non-negative integers ake:1, divided by

=1,2,... N—n, of the zero-range process is the number ofthe difference of {f’l) and the number of solutions to Eg.

particles between thgth and the {(+1)th hole in TASEP. (3.2 with k=0. Therefore

Since in TASEP there are particles andN—n holes on a

ring of N sites, there will beN—n mass variables each at-

taining integer values from zero towith the constraint that P(Xi=k)=

=N""M;=n. A jump of a particle in TASEP corresponds to

a change M; ,M; ;1) —(M;—=1M;,,+1) for somei. This  Note that one could have derived this result also by simply

way TASEP is reduced to the problem withparticles hop-  counting the random walk paths starting with exadthteps

ping to the right on a lattice dfl —n sites, now with multiple  up and ending with a down step and normalizing this number

occupancy allowed. by the number of random walk paths with the first step up
This mapping is, however, not one-to-one, because therand the last step down. From E®.3 we immediately ob-

are N/(N—n) TASEP configurations corresponding to one tain the limiting distribution for the cluster lengths,

configuration of the mass variables. For example, the number

of all mass variable configurations equals the number of so- P.(X;=K)=(1—p)pk 1, (3.9

lutions of the equatiorM;+M,+---+My_,=n in non-

negative integers. This number i§(G_,). But [N/(N  in agreement with the fa¢tl] that in an infinite system size

—n)1(NZE_ ) =(Y), which equals the number of all corre- the measure for TASEP is the product measure.

sponding TASEP configurations, i.e., the number of random The expected cluster size is

walk paths from (0,0) toNl,N—2n). Note that without the

N—k—Z)(N—Z)ll 33

n—k n—1

restriction of Eq.(2.2) this relation between the numbers of N—2|"1N N—k—2\ 1—1/N
configurations would have applied on average only. (Xi)= n—1 2 k n-k |- 1=5
. . .. . . . . k=1 -p
As discussed in Refl0], the joint stationary distribution
of the zero-range process corresponding to TASEP with gen- 1
eral z is the product of the marginal measures of the indi- — 15 as N—oo, (3.5
vidual sites. For the cases=0 andz=n, however, the sta- p
tionary state is particularly simple and can be constructed in | _ _
a straightforward way. and its variance is
IIl. SIMPLE EXCLUSION PROCESS, z=0 _(p—=1N)(1-p—1N)(1-1/N)
VarX;= >
A. Stationary cluster size (1=p)*(1=p+1N)
It is general knowledge that the stationary distribution of p
TASEP on a ring oiN sites is the uniform distributiofil], — (1—p)2 as N—eo. (3.6
-p

the probability of each distinct configuration beinﬁ)(l.
This follows immediately from the fact that the transition
probability to a given state equals the transition probability The remarkably simple result of E¢8.5 shows that the
from the state in question to other states, which makes thexpected cluster size converges to a finite value and it is the
transition matrix doubly stochastid3]. Because the map- humberof clustersC that has to diverge in thl—co limit.
p|ng from TASEP to the Zero-range process is one-to-one u his can be also verified by the fOIlOWing direct evaluation.
to a multiplicative constant, the stationary distribution of theLet us first calculate the probability that there &relusters
Zero_range process Correspondingtgo is also uniform' in the SyStem, i.e., that there d(@ccupied sites in the mass
Due to the translational invariance of our model systempicture. If the first site is to be occupied, plaksites on a

the mass variablel; are identically distributed and the gen- fing, label one of them 1, and fill them with identical
eral behavior is described by local expectations. The statiorPbjects, such that every site gets at least one objecfif) (
ary distribution for sizeX; of theith cluster in TASEP can Wways. After that, placél—n—k vacant sites in between the
then be expressed in terms of the stationary mass variabkeoccupied sites in_] 1) ways. On the other hand, if the
distribution by site 1 is to be vacant, pladet+ 1 sites on a ring, label one

those 1 and fill the sites 2,3. . Kk, such that every site gets

P(Xi=k)=P(M;=kM;=1). (3.1 at least one object, in{(}) ways. Then addN—n—k—1
vacant sites in between iy ("~ ') ways. Thus we get the
_ ) _ ) . hypergeometric distribution,
Next we use translational invariance and the uniformity of
measures to conclude that E@.1) equals the number of
solutions to @0 e (n—l)[ N—n—1)+(N—n—1”
k—1 k—1 k
P(C=k)= N_1

Mi+Mo+ - +Mpy_h_1=n—K, (3.2 ( n )
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n—1)/N—n
k=1 k 3
N_l L ( '7)
n
which immediately yields
<C>_n1—1/N' (3.8

From Egs.(3.5 and (3.8 we find the intuitively expected
relation{C)-(X;)=n.

B. Length of the longest cluster

The knowledge of expectations of maximal objects is of

great importance since it measures the size of large devia-

tions in the system. In this section we study the statistics o
the longest cluster, ma%, in TASEP. In particular, we dis-
cuss the finite size and limiting distribution functions, related

PHYSICAL REVIEW E 64 056114

n

(maxx)= 3, k-P({Mi=k Vi}N{3j:M;=k})

n

:kzl[l_p(Misk—l Vi), (3.19

so that, after simplifications, it can be written as

1 N ppnk=1) _ N—
(miaxXi>= N—-1 k§=:1 Zl (_1)|+1( in)
M)
N—ki—1
X N—n—l)' (3.16

where u, n(K) was defined in Eq(3.13).

f
C. The limiting extremal distribution

It seems difficult to extract the limiting distribution and

expectations, and the effects due to discreteness of th@e type of the divergence of the mean from the exact results

sample space of the mass variables.
The cumulative distribution functiofcdf)

max M;=<Kk)
1<isN-n

F (k) s=P(maxX;<k) = P( (3.9

can be calculated as the ratio of the number of solutions to°

Mi+Mo+ ... +My_p=n (3.10
in non-negative integers witM;<k and the number of its
solutions withM;=n, Vi, respectively. The first of these
two numbers equals the coefficient of théh order term in

1_Xk+l N—n
T |
and therefore
#nn(d [N=n}(N=(k+1)i—1
Fp,N(k): N—1 “=h (_1) i N—-n—1 ’
"
(3.12
where
nn(K) :==min{N—n,|n/(k+1)]} (3.13

and| - | stands for the integer part. Note that foen/2 the
distribution function takes the simple form

N—k-2

nond
N-1| °

n

F,n(K)=1—(N-n) (3.14

The expectation calculated in terms of the cdf is

of Egs.(3.12 and(3.16 directly. For that purpose, we next
consider an alternative approach based on independence.
Intuitively one would expect that as the system gets larger

the weaker become the correlations between the clusters. In

fact, it is easy to see that the mass variables are asymptoti-
ally independent, in that, fdte<N—n,

k
P(M =a;,M; =a,, ... ,Mik=ak)—>|1:[l P..(M; =a),
(3.17

wherei|#i,,, VI,m, andN— . Therefore, we can approxi-
mate the cdf, \(k) by using the product measure, i.e.,

P(maxX;<k)~P(M;<k)N™" (3.18
i
By writing
N—k—2)/N—1|"1
P(Mlsk)=1—(n_k_1)< N ) —1-pktt
as N—oo, (3.19

we get in the largeN limit with p fixed
_efk log 1/p+log Np(1—p)

(3.20

This result is, fork sufficiently large, in agreement with the
earlier result for the tail because E8.14) yields in the large
system size limit

Fp,N(k)"‘(l— g (k+1)log 1/,J)N(1_p)~e

Fon(K)~1=N(1-p)e (kFDlglp, (3.21
which is simply the first order approximation for E@.20.

The cdf in Eq.(3.20 can now be expressed in terms of a
scaled variable
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- logNp(1—p) " |
. D log 1/p 322
PN (oglp)t '
bO8T 1
From the asymptotic theory of the extremes for independent o
and identically distributediid) variableq 14,15 we then ob- g
tain the Gumbel, or Fisher-Tippett, distribution ko 5F 8
P(Z,n<y)~e ¢ . (3.23
2 F -
Strictly speaking, however, the function on the right-hand
side is continuous, whereas the cdf on the left must be piece- ' ' L x
wise constant with an intrinsic thickness log 150 that the (b) X"
relation holds only wherjy+logNp(1—p)]/log(1l/p) is an 30T i ]
integer. In fact, Eq(3.23 would be the correct result for the - x
continuousexponential parent distribution, whereas it has b: <
been shown by Andersofil6] that the discrete geometric g 201 % .
distribution does not belong to the domain of attraction of - x
the Gumbel distribution at all, and that E(8.23 should S y
indeed be replaced by 1.0 f .
— X
lim supP(Z, y<y)<e ¢, (3.24) 5
N— oo 0.0 ! ! 1
10° 10" 10° 10° 10
liminf P(Z, y<y)=e ¢ """ (3.25 N

N— o0

FIG. 1. (a) Expectation value of the size of the longest cluster

i.e., the limiting distribution function has Gumbel envelopes.and(b) its variance as a function of the system sizéor z=0 with

The expectation of a random variable with the Gumbelp=1/2.In(a) the dotted curve is the exact result £8.16 and the
distribution is known to equal Euler's constamt0.5772 fqll curve the asymptotic formula Eq3.26). Crosses denote the
[15], but the evaluation of the expectation of a discrete variSimulation data.
able with Gumbel envelopes is not easily found in the litera-
ture. A direct calculation using the proper point probability
function seems tedious and, therefore, we argue on heuristic \we now turn to the case=n. This means that every time
grounds that since the piecewise constant cdf of the scalegle pick a particle at random, the rightmost particle in the
variable Z, \ is confined between two envelope functions clyster, where the chosen particle belongs to, makes a move.
with expectationsy and y+log 1/p, the final result should be  |n the mass picture this translatesriandependent random
written as walkers on a ring oN—n sites[10].

IV. TASEP WITH ASYMMETRIC DYNAMICS, z=n

(maxX. )~ v+logNp(1—p) n E (3.26 A. Stationary cluster size
i

log 1lp 2’ . . . .
The joint stationary distribution fan independent random

whereN is large. Figure (a) shows that the exact result Eq. walkers on a ring oN—n sites is

(3.16 and the asymptotic formula E¢3.26) are in excellent P(My=my, ... My_n=Mn_p)
agreement with the simulation ddta7].
The effect of discreteness of the mass variables can be 1 n
seen even more clearly in the behavior of the variance than :W( m, ... My_p)’ (4.1

of the expectation. For continuous exponential variables, the
B . 2
variance of the maximum converges to a constaftr?/6 where M, is the number of walkers on the site By Eq.

. 71 .
[15], where the .scalln.g parameter eq_uals (Iog ) n (3.1), the cluster length distribution for the TASEP variables
our case. The simulation results of FigblLdisplay persis- X. iS Now
tent fluctuations around this value, with the distance between'
the maxima diverging logarithmically iN. This kind of be- ( 1
havior has recently been observed also by Bap@inh con- 1-———

y y Baa) N(L—p) (Np)
functions described by Eq$3.24) and (3.25 were called 11— PN k)’
Fisher-Tippett limit cycles because of the quasiperiodic fluc- N(1-p)
tuations of the variance. (4.2

pN—k
) N7K1-p)
nection with percolation theory and the limiting distribution  p(x.=k)=
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the limit of which is Poisson with the proper normalization, VarX;j=(X;)(L+ X —(X;))
— 1+N— ) as N—oo,
\ K o 1—e N 1-e}
Pw(xi:k): m where A= E (4.3) (45)

Since there are{z‘(”) ways to choosd sites from a ring of
N—n sites andk! S(n,k), whereS(n,Kk) is the Stirling num-
The parametex introduced above describes the length scaléer of the second kind, ways to pntparticles intok sites
of correlations in the system. Remember that in the @ase such that each site gets at least one particle, the distribution
=0 the corresponding parameter was (log)I*=\, so  for the number of clusters now reads
that the correlations are expected to die out faster in the
present case. Now we have the mean and the variance of the

N—n\ k!'S(n,k)
length of particle clusters

e=h=[", (N—n

(4.6)

which again givegC)-(X;)=n.
Due to the lack of particle-hole symmetry, the properties

(X{)= A — A as N-—oo, of the hole clusters differ from those presented above. How-
1ot |7 1-e? ever, the distribution for the lengt; of theith hole cluster
N(1-p) can be easily constructed in terms of the distribution for the
(4.4  mass variables,
|
P(M;;,>0) if k=1
P(Hi=k) = .
P(Mi+l:O!Mi+2:O1""Mi+k*l:0!Mi+k>0) |f k>2
(1 k—1 )pN (1 k )pN (& 1)6 N r
=|1-———] —|1-———] —(e*=1e asN—oeo. .
N(1-p) N(1-p)
|
The corresponding cdf is However, an approximate form for the tail of the distribution
can be obtained from Ed4.10 assuming that, fok suffi-
PN ciently large, at most one of the masses excédeds
P(Hi<k)=1— 1——) 1—e Mk :
N(1-p)
. _ n
as N-—oo, (4.9 P(HJ-X1>k)_(N_n)n 3 My mNn)
Zim=
and the expected length of hole clusters e
n
N—n n
k—1 \°N 1 ~(N-n) > ( )
<Hi>_k21 (1— N(l——p)> Sl N—co. my e\ Mg
(4.9 ><(N—n—l)“—mw—n
(N=m)"
B. Length of the longest cluster
The exact longest particle cluster cdf for the casen % ( N~ MN-n )
reads m;<k, Vi, mp ... My_p-1
Zim=n—my_,
P(maxX;<k) ( n 1
M =)= N m e wi \My ... my_p) X (4.1
i (N—n) m,Ei\nl;,:\:, 1 N-n (N—n—1)""™-n

(4.10
Here the sum in the last term is the probability that on a ring
which seems to be, from the viewpoint of applications, everof N—n—1 sites with a total oh—my_,, independent ran-
less instructive than Ed3.12 was for the ordinary TASEP. dom walkers there are at mdstvalkers on a single site. But
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for k=(n—1)/2, and approximately perhaps even for However, we would like to remark that, despite its shortcom-
smallerk values, this probability equals unity and thereforeings, the approximation of Eq4.15 vyields the same func-

we have

’ n |\ (N—n—1)"""M-n
P(maxX;=k)~1—
i my—n=k+1 MN-—n

(N—n)"1t
Ka—A\ )\J
TNATONE S ik
AKe™A
%1—n(k+—1)!, (4.12)

whenk is sufficiently large and alsdl large at the last two
stages.

tional form for the expected length of the longest cluster: In
the leading order
n-1
(max<;)~ 2, Xz, (4.18
: =

wherey; ., is the indicator function anth, is some crossover
mass, where the distribution function increases most rapidly.
Equation(4.15 then gives the very interesting result

(my+1)! _

e Mn,
AMx

(4.19

i.e., the expected length of the longgxirticle cluster di-

Again, one can show that the cluster sizes are asymptotierges as the inverse relation of £4.19 in n. In the special

cally independent, in that E¢3.17) holds with

(N—n—21)""X/n
P(Mi:k):W(k)_’Pm(Mi:k)

Ae

= as N—oo, (4.13

Therefore, Eq(4.12 suggests that the limiting distribution
function is, as in the=0 case, approximately given by the
product

)\j n/\
F)\ n(k)~ 1—67)\ .
: iZk+1 !
~a € M/ )\j/j| 4.1
e j=k+1 ( ' 4)
%e—eﬂxkn/(kﬂ)!, (4.15

wherek>\ andN is large. From the mathematical point of

casen=1, i.e.,p=1/2, the type of divergence reduces to an
inverse factorial. Furthermore, by Stirling’s formula one ob-
tains the same functional form as in Kimber’s result in Eq.
(4.17). Our analytical result is again supported by simula-
tions as seen in Fig.(@).

The plot of the variance in Fig.(B) shows again fluctua-
tions, and the divergence of the distance between maxima is
now dictated by the inverse relation of E¢.19. In general,
it can be seen that the fluctuations are more pronounced than
those in the ordinary TASEP. We also observe that the vari-
ance has a global maximum at a finite system size. Below
this maximum, the correlation lengthis comparable to the
system size, which results in large fluctuations of the maxi-
mum. ForN>\ the system can be considered to consist of a
large number of independent copies and the iid behavior is
recovered. In the end, one should notice that, unfortunately,
the continuum approximation of the form E¢..15 with the
factorial replaced by the gamma function cannot be used to
evaluate the variance: In the continuous case, the maximum
concentrates on one real number, in that the properly scaled
variable converges to a distribution degenerate at zero
[14,16].

In Fig. 2 we show the expectation and the variance also

view, however, one should be careful with this approxima-for the hole clusters. According to Eq(4.7), the limiting
tion, because the distribution function for the maximum ofdistribution for the lengths of the hole clusters is again geo-
iid Poisson variables does not actually converge to the GumM€tric, as in the case a=0 dynamics, but the number of
bel distribution — not even in the sense of continuous Gum<lUSters is random and the length of the longest cluster de-
bel envelopes as it was in the=0 case[16,18. Namely pends on that number. The solution to this problem can be
Anderson has showfiL6] that the probability of the maxi- found by defining new mass variablbt* as the number of
mum concentrates on two consecutive integers, i.e., ther@oles betweenth and +1)th particles. Equatiof4.8) then
exists a sequence of integdrg\) such that tells that

lim P [max M;=I,(N)or I,(\)+1]=1.

n/\—o 1<i=n/\

(4.19 K N
P(Mrik)zl—cp'N( 1— N(l—_p))

The sequencelf) then obviously determines the type of
divergence of the mean. It was shown by Kimp#s] that in
the leading order this sequence diverges as

—1-C,e ™ as N—o,

(4.20

where C, ) is a sequence of constants with yy=C,
>0. Since there are nownew mass variables and the parent
distribution is geometriclike, the limiting extremal distribu-

logn

n(A)~ loglogn”

(4.17)
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FIG. 2. (a) Expectation values of the size of the longest particle  FIG. 3. (a) Expectation values of the size of the longest cluster
cluster and the size of the longest hole cluster é@mdtheir vari- and (b) its variance as a function of the system sidefor the

ances as a function of the system siMefor z=n with p=1/2. symmetrized model withe=n and p=1/2. Crosses denote the
Crosses and squares denote the simulation data for particle clustesgnulation data for clusters in the symmetrized model(dn the

and hole clusters, respectively. (& the dotted curve was obtained asymptotic curves for the corresponding asymmetric case from Fig.
by substituting Eq(4.14) in Eq. (3.15 and the full curve by taking 2 are shown for comparison by the dashed lines.

the crossover mass to be the point where the approximate cdf of Eq.

(4.15 obtains the value 1/2. The dash-dotted line is the function

0.987 logN, where the prefactor was chosen to produce the “best Thez=1 dynamics can be seen to be equivalent to depo-
fit.” sition rule such that the deposited particles relax towards the

local minima from the decreasing parts of the height function

(x,t). If the particle lands on an increasing part, nothing

appens. Since this kind of asymmetry is not very common
in real applications of the interface interpretation, we also
studied numerically a spatial symmetrization of then

V. DISCUSSION case with p=1/2. This symmetrization belongs to the
Edwards-Wilkinson universality clagd9]. In it, deposited
We shall now discuss our results from a different point ofparticles always flow downbhill to a local minimum. In case

view. There is a well-known mapping from TASEP to a the particle lands on a hill top, the minimum is determined
certain lattice model, namely the one-dimensional single-stepsing a fair coin. The results are plotted in Fig. 3. The mean
model, of interface growthl]. In this mapping each particle |ength of the longest cluster diverges now faster than in the
is considered a unit step down and each vacancy a unit stegsymmetricz=n case studied in Sec. 1V, the earlier analyti-
up. The functiorh(x,t), wherex is the spatial andthe time  cal result for which is shown for comparison in FigaB
coordinate, obtained this way is defined to be constant beFhis is consistent with the fact that on average the hole clus-
tween the integers and, say, right-continuous. Clearly, theers are considerably shorter than in the case of asymmetric
condition p#1/2 implies existence of a global tilt. The dynamics, which is compensated by longer particle clusters.
lengths of the clusters in the TASEP picture translate to the'he other features can be seen to be quite similar to those of
lengths of the decreasing parts of the interface. Note that thihe asymmetric case. For example, the variance of the long-
z=0 case has particle-hole symmetry and the results obest cluster has a maximum at finikeand quasiperiodic os-
tained for the decreasing parfsorresponding to particle cillations as before.

tion has again Gumbel envelopes and the divergence of t
mean is logarithmic, as seen in Figap

clusterg are valid for the increasing parthole clustersas In conclusion, we presented analytical and numerical re-
well. Forz=1 the properties of the increasing parts must besults for the properties of the clusters in asymmetric exclu-
calculated from the hole distribution. sion processes with two different dynamics. In particular, we
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studied the properties of the longest cluster in the system anekt cluster is distributed among two consecutive integers in
showed that the large system behavior agrees with thehe large system limit.

asymptotic theory of the extremes for independent and iden-

tically distributed varlableg,. The expecl:ted'length pf t_he long- ACKNOWLEDGMENTS
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