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Cluster size distributions in particle systems with asymmetric dynamics
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We present exact and asymptotic results for clusters in the one-dimensional totally asymmetric exclusion
process~TASEP! with two different dynamics. The expected length of the largest cluster is shown to diverge
logarithmically with an increasing system size for ordinary TASEP dynamics and as a logarithm divided by a
double logarithm for generalized dynamics, where the hopping probability of a particle depends on the size of
the cluster it belongs to. The connection with the asymptotic theory of extreme order statistics is discussed in
detail. We also consider a related model of interface growth, where the deposited particles are allowed to relax
to the local gravitational minimum.
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I. INTRODUCTION

The totally antisymmetric exclusion process~TASEP! is
one of the most studied models of nonequilibrium pheno
ena and has attracted both physicists and mathematic
Many of its features, including density profiles and curren
have been solved with periodic and open boundary co
tions @1–3#. In particular, the so-called matrix formulatio
has provided an elegant way of exploring the properties
the steady state and has been successfully applied to get
trivial results for the so-called shock solutions and for s
tems with several species of particles@4,5#. Recently, it has
been used to solve the exact large deviation functional
the density profile in the case of open boundaries@6#.

TASEP has been used to model free traffic flow@7# and
traffic jams induced by a crossing@8#. Traffic interpretation
naturally raises a question of queue lengths in the syst
Although this problem is equivalent to one-dimensional s
percolation in the canonical ensemble, if the steady s
with usual exclusion dynamics and periodic boundary con
tions is considered, being exactly solvable, it may still g
some insight to problems, which are too complicated to so
in more complex situations. The statistics of the long
queue, or particle cluster as we shall call them, is interes
because it measures the size of the large deviations in
system. Largest clusters in percolation in general dimens
were recently studied by Bazant@9#. An exact solution, with
limiting behaviors, is presented in this paper for the on
dimensional exclusion process. In exclusion processes,
has also the possibility of changing the microscopic dyna
ics, which leads to percolation problems with different typ
of cluster statistics. For example, a model for ‘‘reckless dr
ers,’’ who are trying to escape from their chasers, is con
ered in the present paper. We show that this dynamics re
in Poisson statistics for the cluster sizes, which in turn ma
the properties of the largest cluster very different from tho
in the case of the usual TASEP dynamics.

TASEP is also related to two other well-known noneq
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librium systems, namely interface growth and directed po
mers in random media@1#. In particular, the cluster proper
ties are translated to the excursion properties of the grow
interface and the largest clusters measure the long excurs
before turning back.

This paper is organized as follows. In Sec. II we pres
the basic definitions and the mapping between TASEP
the so-called zero-range process. The properties of cluste
stationary TASEP are studied using this mapping in Sec.
In particular, we present analytical results for the largest p
ticle and hole clusters in Secs. III B and III C. In Sec. I
extremal statistics of clusters for TASEP with the modifi
dynamics is considered. Finally, in Sec. V we discuss a
lated model of interface growth.

II. THE MODEL

The model system we analyze in Secs. III and IV is t
totally asymmetric exclusion process~TASEP! with n par-
ticles hopping to the right in a one-dimensional lattice ofN
sites, whereN is an even number, with periodic bounda
conditions. For convenience~see below!, we first restrict

rªn/N5121/k where k52,3, . . . . ~2.1!

The dynamics, however, differs from that of the ordina
TASEP. We introduce another parameterz50,1, . . . ,n,
which for z>1 makes the hopping probability depend on t
length of the queue behind the particle in question as
lows: After randomly picking an occupied site, check ho
many occupied sites there are in between the chosen site
the next empty site. If this number is less than or equal toz,
the rightmost particle in the cluster makes a move to the ri
— otherwise nothing happens.

Now the casez50 is clearly the usual TASEP. In th
present paper, we concentrate mainly on the cluster len
properties of the two casesz50 and z5n. We shall also
comment briefly on a model of interface growth, where t
deposited particles always relax to the local minimum, wh
is equivalent to a certain symmetrization of thez5n case.

A. TASEP and the zero-range process

Many properties of the exclusion process can be acce
by using the mapping@10,11# to the zero-range process in
©2001 The American Physical Society14-1



o

t-

to

e
ne
b
s

-
om

of

e
di

d

o

n
lit
th

-
u

he

em
-

io

ab

o
f

.

ply

ber
up

the

n.

s

e
e

s

O. PULKKINEN AND J. MERIKOSKI PHYSICAL REVIEW E64 056114
troduced in Ref. @12#. The mass variableMi , i
51,2, . . . ,N2n, of the zero-range process is the number
particles between thei th and the (i 11)th hole in TASEP.
Since in TASEP there aren particles andN2n holes on a
ring of N sites, there will beN2n mass variables each a
taining integer values from zero ton with the constraint that
( i 51

N2nM i5n. A jump of a particle in TASEP corresponds
a change (Mi ,Mi 11)→(Mi21,Mi 1111) for somei. This
way TASEP is reduced to the problem withn particles hop-
ping to the right on a lattice ofN2n sites, now with multiple
occupancy allowed.

This mapping is, however, not one-to-one, because th
are N/(N2n) TASEP configurations corresponding to o
configuration of the mass variables. For example, the num
of all mass variable configurations equals the number of
lutions of the equationM11M21•••1MN2n5n in non-
negative integers. This number is (N2n21

N21 ). But @N/(N
2n)#(N2n21

N21 )5(n
N), which equals the number of all corre

sponding TASEP configurations, i.e., the number of rand
walk paths from (0,0) to (N,N22n). Note that without the
restriction of Eq.~2.1! this relation between the numbers
configurations would have applied on average only.

As discussed in Ref.@10#, the joint stationary distribution
of the zero-range process corresponding to TASEP with g
eral z is the product of the marginal measures of the in
vidual sites. For the casesz50 andz5n, however, the sta-
tionary state is particularly simple and can be constructe
a straightforward way.

III. SIMPLE EXCLUSION PROCESS, zÄ0

A. Stationary cluster size

It is general knowledge that the stationary distribution
TASEP on a ring ofN sites is the uniform distribution@1#,
the probability of each distinct configuration being (n

N)21.
This follows immediately from the fact that the transitio
probability to a given state equals the transition probabi
from the state in question to other states, which makes
transition matrix doubly stochastic@13#. Because the map
ping from TASEP to the zero-range process is one-to-one
to a multiplicative constant, the stationary distribution of t
zero-range process corresponding toz50 is also uniform.

Due to the translational invariance of our model syst
the mass variablesMi are identically distributed and the gen
eral behavior is described by local expectations. The stat
ary distribution for sizeXi of the i th cluster in TASEP can
then be expressed in terms of the stationary mass vari
distribution by

P~Xi5k!5P~Mi5kuMi>1!. ~3.1!

Next we use translational invariance and the uniformity
measures to conclude that Eq.~3.1! equals the number o
solutions to

M11M21•••1MN2n215n2k, ~3.2!
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whereMi ’s are non-negative integers andk>1, divided by
the difference of (n

N21) and the number of solutions to Eq
~3.2! with k50. Therefore

P~Xi5k!5S N2k22
n2k D S N22

n21 D 21

. ~3.3!

Note that one could have derived this result also by sim
counting the random walk paths starting with exactlyk steps
up and ending with a down step and normalizing this num
by the number of random walk paths with the first step
and the last step down. From Eq.~3.3! we immediately ob-
tain the limiting distribution for the cluster lengths,

P`~Xi5k!5~12r!rk21, ~3.4!

in agreement with the fact@1# that in an infinite system size
the measure for TASEP is the product measure.

The expected cluster size is

^Xi&5S N22
n21 D 21

(
k51

N

kS N2k22
n2k D5

121/N

12r

→ 1

12r
as N→`, ~3.5!

and its variance is

VarXi5
~r21/N!~12r21/N!~121/N!

~12r!2~12r11/N!

→ r

~12r!2
as N→`. ~3.6!

The remarkably simple result of Eq.~3.5! shows that the
expected cluster size converges to a finite value and it is
numberof clustersC that has to diverge in theN→` limit.
This can be also verified by the following direct evaluatio
Let us first calculate the probability that there arek clusters
in the system, i.e., that there arek occupied sites in the mas
picture. If the first site is to be occupied, placek sites on a
ring, label one of them 1, and fill them withn identical
objects, such that every site gets at least one object, in (k21

n21)
ways. After that, placeN2n2k vacant sites in between th
k occupied sites in (k21

N2n21) ways. On the other hand, if th
site 1 is to be vacant, placek11 sites on a ring, label one
those 1 and fill the sites 2,3, . . . ,k, such that every site get
at least one object, in (k21

n21) ways. Then addN2n2k21
vacant sites in between in (k

N2n21) ways. Thus we get the
hypergeometric distribution,

P~C5k!5

S n21
k21D F S N2n21

k21 D1S N2n21
k D G

S N21
n D
4-2
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5

S n21
k21D S N2n

k D
S N21

n D , ~3.7!

which immediately yields

^C&5n
12r

121/N
. ~3.8!

From Eqs.~3.5! and ~3.8! we find the intuitively expected
relation ^C&•^Xi&5n.

B. Length of the longest cluster

The knowledge of expectations of maximal objects is
great importance since it measures the size of large de
tions in the system. In this section we study the statistics
the longest cluster, maxiXi , in TASEP. In particular, we dis-
cuss the finite size and limiting distribution functions, relat
expectations, and the effects due to discreteness of
sample space of the mass variables.

The cumulative distribution function~cdf!

Fr,N~k!ªP~max
i

Xi<k!5P~ max
1< i<N2n

Mi<k! ~3.9!

can be calculated as the ratio of the number of solutions

M11M21 . . . 1MN2n5n ~3.10!

in non-negative integers withMi<k and the number of its
solutions with Mi<n, ; i , respectively. The first of thes
two numbers equals the coefficient of thenth order term in

~11x1•••1xk!N2n5S 12xk11

12x D N2n

~3.11!

and therefore

Fr,N~k!5
1

S N21
n D (

i 50

mn,N(k)

~21! i S N2n
i D S N2~k11!i 21

N2n21 D ,

~3.12!

where

mn,N~k!ªmin$N2n,bn/~k11!c% ~3.13!

and b• c stands for the integer part. Note that fork>n/2 the
distribution function takes the simple form

Fr,N~k!512~N2n!
S N2k22
N2n21D
S N21

n D . ~3.14!

The expectation calculated in terms of the cdf is
05611
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Xi&5 (
k51

n

k•P~$Mi<k ; i %ù$' j :M j5k%!

5 (
k51

n

@12P~Mi<k21 ; i !#, ~3.15!

so that, after simplifications, it can be written as

^max
i

Xi&5
1

S N21
n D (

k51

n

(
i 51

mn,N(k21)

~21! i 11S N2n
i D

3S N2ki21
N2n21 D , ~3.16!

wheremn,N(k) was defined in Eq.~3.13!.

C. The limiting extremal distribution

It seems difficult to extract the limiting distribution an
the type of the divergence of the mean from the exact res
of Eqs.~3.12! and ~3.16! directly. For that purpose, we nex
consider an alternative approach based on independenc

Intuitively one would expect that as the system gets lar
the weaker become the correlations between the cluster
fact, it is easy to see that the mass variables are asymp
cally independent, in that, fork<N2n,

P~Mi 1
5a1 ,Mi 2

5a2 , . . . ,Mi k
5ak!→)

l 51

k

P`~Mi l
5al !,

~3.17!

wherei lÞ i m , ; l ,m, andN→`. Therefore, we can approxi
mate the cdfFr,N(k) by using the product measure, i.e.,

P~max
i

Xi<k!'P~M1<k!N2n. ~3.18!

By writing

P~M1<k!512S N2k22
n2k21 D S N21

n D 21

→12rk11

as N→`, ~3.19!

we get in the largeN limit with r fixed

Fr,N~k!;~12e2(k11)log 1/r!N(12r)'e2e2k log 1/r1 log Nr(12r)
.

~3.20!

This result is, fork sufficiently large, in agreement with th
earlier result for the tail because Eq.~3.14! yields in the large
system size limit

Fr,N~k!;12N~12r!e2(k11)log 1/r, ~3.21!

which is simply the first order approximation for Eq.~3.20!.
The cdf in Eq.~3.20! can now be expressed in terms of

scaled variable
4-3
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Zr,Nª

max
i

Xi2
logNr~12r!

log 1/r

~ log 1/r!21
. ~3.22!

From the asymptotic theory of the extremes for independ
and identically distributed~iid! variables@14,15# we then ob-
tain the Gumbel, or Fisher-Tippett, distribution

P~Zr,N<y!;e2e2y
. ~3.23!

Strictly speaking, however, the function on the right-ha
side is continuous, whereas the cdf on the left must be pie
wise constant with an intrinsic thickness log 1/r, so that the
relation holds only when@y1 logNr(12r)#/log(1/r) is an
integer. In fact, Eq.~3.23! would be the correct result for th
continuousexponential parent distribution, whereas it h
been shown by Anderson@16# that thediscretegeometric
distribution does not belong to the domain of attraction
the Gumbel distribution at all, and that Eq.~3.23! should
indeed be replaced by

lim sup
N→`

P~Zr,N<y!<e2e2y
, ~3.24!

lim inf
N→`

P~Zr,N<y!>e2e2y1 log 1/r
, ~3.25!

i.e., the limiting distribution function has Gumbel envelope
The expectation of a random variable with the Gum

distribution is known to equal Euler’s constantg'0.5772
@15#, but the evaluation of the expectation of a discrete va
able with Gumbel envelopes is not easily found in the lite
ture. A direct calculation using the proper point probabil
function seems tedious and, therefore, we argue on heur
grounds that since the piecewise constant cdf of the sc
variable Zr,N is confined between two envelope functio
with expectationsg andg1 log 1/r, the final result should be
written as

^max
i

Xi&'
g1 logNr~12r!

log 1/r
1

1

2
, ~3.26!

whereN is large. Figure 1~a! shows that the exact result Eq
~3.16! and the asymptotic formula Eq.~3.26! are in excellent
agreement with the simulation data@17#.

The effect of discreteness of the mass variables can
seen even more clearly in the behavior of the variance t
of the expectation. For continuous exponential variables,
variance of the maximum converges to a constants2p2/6
@15#, where the scaling parameters equals (log 1/r)21 in
our case. The simulation results of Fig. 1~b! display persis-
tent fluctuations around this value, with the distance betw
the maxima diverging logarithmically inN. This kind of be-
havior has recently been observed also by Bazant@9# in con-
nection with percolation theory and the limiting distributio
functions described by Eqs.~3.24! and ~3.25! were called
Fisher-Tippett limit cycles because of the quasiperiodic fl
tuations of the variance.
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IV. TASEP WITH ASYMMETRIC DYNAMICS, zÄn

We now turn to the casez5n. This means that every time
we pick a particle at random, the rightmost particle in t
cluster, where the chosen particle belongs to, makes a m
In the mass picture this translates ton independent random
walkers on a ring ofN2n sites@10#.

A. Stationary cluster size

The joint stationary distribution forn independent random
walkers on a ring ofN2n sites is

P~M15m1 , . . . ,MN2n5mN2n!

5
1

~N2n!n S n
m1 . . . mN2n

D , ~4.1!

where Mi is the number of walkers on the sitei. By Eq.
~3.1!, the cluster length distribution for the TASEP variabl
Xi is now

P~Xi5k!5

S 12
1

N~12r! D
rN2k

N2k~12r!2k

12S 12
1

N~12r! D
rN S Nr

k D ,

~4.2!

FIG. 1. ~a! Expectation value of the size of the longest clus
and~b! its variance as a function of the system sizeN for z50 with
r51/2. In ~a! the dotted curve is the exact result Eq.~3.16! and the
full curve the asymptotic formula Eq.~3.26!. Crosses denote the
simulation data.
4-4
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the limit of which is Poisson with the proper normalizatio

P`~Xi5k!5
l2k

k! ~el21!
where l5

r

12r
. ~4.3!

The parameterl introduced above describes the length sc
of correlations in the system. Remember that in the casz
50 the corresponding parameter was (log 1/r)21>l, so
that the correlations are expected to die out faster in
present case. Now we have the mean and the variance o
length ofparticle clusters

^Xi&5
l

12S 12
1

N~12r! D
rN→ l

12e2l
as N→`,

~4.4!
e
.

05611
e

e
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VarXi5^Xi&~11l2^Xi&!

→ l

12e2lS 11l2
l

12e2lD as N→`.

~4.5!

Since there are (k
N2n) ways to choosek sites from a ring of

N2n sites andk!S(n,k), whereS(n,k) is the Stirling num-
ber of the second kind, ways to putn particles intok sites
such that each site gets at least one particle, the distribu
for the number of clusters now reads

P~C5k!5S N2n
k D k!S~n,k!

~N2n!n
~4.6!

which again giveŝC&•^Xi&5n.
Due to the lack of particle-hole symmetry, the propert

of theholeclusters differ from those presented above. Ho
ever, the distribution for the lengthHi of the i th hole cluster
can be easily constructed in terms of the distribution for
mass variables,
P~Hi5k!5H P~Mi 11.0! if k51

P~Mi 1150,Mi 1250, . . . ,Mi 1k2150,Mi 1k.0! if k>2

5S 12
k21

N~12r! D
rN

2S 12
k

N~12r! D
rN

→~el21!e2lk asN→`. ~4.7!
n

ing

t

The corresponding cdf is

P~Hi<k!512S 12
k

N~12r! D
rN

→12e2lk

as N→`, ~4.8!

and the expected length of hole clusters

^Hi&5 (
k51

N2n S 12
k21

N~12r! D
rN

→ 1

12e2l
as N→`.

~4.9!

B. Length of the longest cluster

The exact longest particle cluster cdf for the casez5n
reads

P~max
i

Xi<k!5
1

~N2n!n (
mi<k, ; i ,

( imi5n

S n
m1 . . . mN2n

D ,

~4.10!

which seems to be, from the viewpoint of applications, ev
less instructive than Eq.~3.12! was for the ordinary TASEP
n

However, an approximate form for the tail of the distributio
can be obtained from Eq.~4.10! assuming that, fork suffi-
ciently large, at most one of the masses exceedsk,

P~' j :Xj.k!5
1

~N2n!n (
' j : mj .k,

( imi5n

S n
m1 . . . mN2n

D

'~N2n! (
mN2n5k11

n S n
mN2n

D
3

~N2n21!n2mN2n

~N2n!n

3 (
mi<k, ; i ,

( imi5n2mN2n

S n2mN2n

m1 . . . mN2n21
D

3
1

~N2n21!n2mN2n
. ~4.11!

Here the sum in the last term is the probability that on a r
of N2n21 sites with a total ofn2mN2n independent ran-
dom walkers there are at mostk walkers on a single site. Bu
4-5
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O. PULKKINEN AND J. MERIKOSKI PHYSICAL REVIEW E64 056114
for k>(n21)/2, and approximately perhaps even f
smallerk values, this probability equals unity and therefo
we have

P~max
i

Xi<k!'12 (
mN2n5k11

n S n
mN2n

D ~N2n21!n2mN2n

~N2n!n21

;12N~12r!lke2l(
j >0

l j

j ! ~k1 j 11!!

'12n
lke2l

~k11!!
, ~4.12!

whenk is sufficiently large and alsoN large at the last two
stages.

Again, one can show that the cluster sizes are asymp
cally independent, in that Eq.~3.17! holds with

P~Mi5k!5
~N2n21!n2k

~N2n!n S n
kD→P`~Mi5k!

5
lke2l

k!
as N→`. ~4.13!

Therefore, Eq.~4.12! suggests that the limiting distributio
function is, as in thez50 case, approximately given by th
product

Fl,n~k!;S 12e2l (
j >k11

l j

j ! D n/l

'e2e2ln/l (
j >k11

l j / j ! ~4.14!

'e2e2llkn/(k11)!, ~4.15!

wherek.l andN is large. From the mathematical point o
view, however, one should be careful with this approxim
tion, because the distribution function for the maximum
iid Poisson variables does not actually converge to the G
bel distribution — not even in the sense of continuous Gu
bel envelopes as it was in thez50 case@16,18#. Namely,
Anderson has shown@16# that the probability of the maxi-
mum concentrates on two consecutive integers, i.e., th
exists a sequence of integersI n(l) such that

lim
n/l→`

P @max
1< i<n/l

Mi5I n~l!or I n~l!11]51. ~4.16!

The sequence (I n) then obviously determines the type
divergence of the mean. It was shown by Kimber@18# that in
the leading order this sequence diverges as

I n~l!;
logn

log logn
. ~4.17!
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However, we would like to remark that, despite its shortco
ings, the approximation of Eq.~4.15! yields the same func-
tional form for the expected length of the longest cluster:
the leading order

^max
i

Xi&' (
k50

n21

x$k<mx% , ~4.18!

wherex$•% is the indicator function andmx is some crossove
mass, where the distribution function increases most rapi
Equation~4.15! then gives the very interesting result

~mx11!!

lmx
;e2ln, ~4.19!

i.e., the expected length of the longestparticle cluster di-
verges as the inverse relation of Eq.~4.19! in n. In the special
casel51, i.e.,r51/2, the type of divergence reduces to
inverse factorial. Furthermore, by Stirling’s formula one o
tains the same functional form as in Kimber’s result in E
~4.17!. Our analytical result is again supported by simu
tions as seen in Fig. 2~a!.

The plot of the variance in Fig. 2~b! shows again fluctua-
tions, and the divergence of the distance between maxim
now dictated by the inverse relation of Eq.~4.19!. In general,
it can be seen that the fluctuations are more pronounced
those in the ordinary TASEP. We also observe that the v
ance has a global maximum at a finite system size. Be
this maximum, the correlation lengthl is comparable to the
system size, which results in large fluctuations of the ma
mum. ForN@l the system can be considered to consist o
large number of independent copies and the iid behavio
recovered. In the end, one should notice that, unfortunat
the continuum approximation of the form Eq.~4.15! with the
factorial replaced by the gamma function cannot be use
evaluate the variance: In the continuous case, the maxim
concentrates on one real number, in that the properly sc
variable converges to a distribution degenerate at z
@14,16#.

In Fig. 2 we show the expectation and the variance a
for the hole clusters. According to Eq.~4.7!, the limiting
distribution for the lengths of the hole clusters is again g
metric, as in the case ofz50 dynamics, but the number o
clusters is random and the length of the longest cluster
pends on that number. The solution to this problem can
found by defining new mass variablesMi* as the number of
holes betweeni th and (i 11)th particles. Equation~4.8! then
tells that

P~Mi* <k!512Cr,NS 12
k

N~12r! D
rN

→12Cre2lk as N→`,
~4.20!

where (Cr,N) is a sequence of constants with limCr,N5Cr

.0. Since there are nown new mass variables and the pare
distribution is geometriclike, the limiting extremal distribu
4-6
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tion has again Gumbel envelopes and the divergence of
mean is logarithmic, as seen in Fig. 2~a!.

V. DISCUSSION

We shall now discuss our results from a different point
view. There is a well-known mapping from TASEP to
certain lattice model, namely the one-dimensional single-s
model, of interface growth@1#. In this mapping each particle
is considered a unit step down and each vacancy a unit
up. The functionh(x,t), wherex is the spatial andt the time
coordinate, obtained this way is defined to be constant
tween the integers and, say, right-continuous. Clearly,
condition rÞ1/2 implies existence of a global tilt. Th
lengths of the clusters in the TASEP picture translate to
lengths of the decreasing parts of the interface. Note that
z50 case has particle-hole symmetry and the results
tained for the decreasing parts~corresponding to particle
clusters! are valid for the increasing parts~hole clusters! as
well. For z>1 the properties of the increasing parts must
calculated from the hole distribution.

FIG. 2. ~a! Expectation values of the size of the longest parti
cluster and the size of the longest hole cluster and~b! their vari-
ances as a function of the system sizeN for z5n with r51/2.
Crosses and squares denote the simulation data for particle clu
and hole clusters, respectively. In~a! the dotted curve was obtaine
by substituting Eq.~4.14! in Eq. ~3.15! and the full curve by taking
the crossover mass to be the point where the approximate cdf o
~4.15! obtains the value 1/2. The dash-dotted line is the funct
0.987 logN, where the prefactor was chosen to produce the ‘‘b
fit.’’
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Thez>1 dynamics can be seen to be equivalent to de
sition rule such that the deposited particles relax towards
local minima from the decreasing parts of the height funct
h(x,t). If the particle lands on an increasing part, nothi
happens. Since this kind of asymmetry is not very comm
in real applications of the interface interpretation, we a
studied numerically a spatial symmetrization of thez5n
case with r51/2. This symmetrization belongs to th
Edwards-Wilkinson universality class@19#. In it, deposited
particles always flow downhill to a local minimum. In cas
the particle lands on a hill top, the minimum is determin
using a fair coin. The results are plotted in Fig. 3. The me
length of the longest cluster diverges now faster than in
asymmetricz5n case studied in Sec. IV, the earlier analy
cal result for which is shown for comparison in Fig. 3~a!.
This is consistent with the fact that on average the hole c
ters are considerably shorter than in the case of asymm
dynamics, which is compensated by longer particle clust
The other features can be seen to be quite similar to thos
the asymmetric case. For example, the variance of the lo
est cluster has a maximum at finiteN and quasiperiodic os
cillations as before.

In conclusion, we presented analytical and numerical
sults for the properties of the clusters in asymmetric exc
sion processes with two different dynamics. In particular,

ers

q.
n
t

FIG. 3. ~a! Expectation values of the size of the longest clus
and ~b! its variance as a function of the system sizeN for the
symmetrized model withz5n and r51/2. Crosses denote th
simulation data for clusters in the symmetrized model. In~a!, the
asymptotic curves for the corresponding asymmetric case from
2 are shown for comparison by the dashed lines.
4-7



a
th
e
g
s

hm
y

ke
n

s in

for
emy

O. PULKKINEN AND J. MERIKOSKI PHYSICAL REVIEW E64 056114
studied the properties of the longest cluster in the system
showed that the large system behavior agrees with
asymptotic theory of the extremes for independent and id
tically distributed variables. The expected length of the lon
est cluster was found to diverge logarithmically with increa
ing system size for the ordinary TASEP and as a logarit
divided by a double logarithm in the case of modified d
namics, which corresponds to independent random wal
in the mass picture. In the latter case, the length of the lo
te

ys

nt

05611
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est cluster is distributed among two consecutive integer
the large system limit.
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